
Multi-agent Planning
An introduction to planning and coordination

Mathijs de Weerdt, Adriaan ter Mors, and Cees Witteveen
Dept. of Software Technology, Delft University of Technology

E-MAIL : {M .M .DEWEERDT, A .W.TERMORS, WITT}@EWI.TUDELFT.NL

1 Introduction

Many day-to-day situations involve decision making: for example, a taxi company has
some transportation tasks to be carried out, a large firm has to distribute a lot of com-
plicated tasks among its subdivisions or subcontractors, and an air-traffic controller has
to assign time slots to planes that are landing or taking off. Intelligentagentscan aid in
this decision-making process. Agents are often classified into two categories according
to the techniques they employ in their decision making:reactiveagents (cf. (Ferber and
Drogoul, 1992)) base their next decision solely on their current sensory input;planning
agents, on the other hand, take into account anticipated future developments — for in-
stance as a result of their own actions — to decide on the most favourable course of
action.

When an agent should plan and when it should be reactive depends on the particular
situation it finds itself in. Consider the example where an agent has to plan a route from
one place to another. A reactive agent might use a compass to plot its course, whereas a
planning agent would consult a map. Clearly, the planning agent will come up with the
shortest route in most cases, as it won’t be confounded by uncrossable rivers, one-way
streets, and labyrinthine city layouts. On the other hand, there are also situations where
a reactive agent can at least be equally effective, for instance if there are no maps to
consult, for instance in a domain of (Mars) exploration rovers. Nevertheless, the ability
to plan ahead is invaluable in many domains, so in this paper we will focus onplanning
agents.

The general structure of a planning problem is easy to explain: (the relevant part of)
the world is in a certain state, but managers or directors would like it to be in another
state. The (abstract) problem of how one should get from the current state of the world
through a sequence of actions to the desired goal state is aplanning problem. Ideally,
to solve such planning problems, we would like to have a general planning-problem
solver. However, such an algorithm solving all planning problems can be proven to
be non-existing.1 We therefore start to concentrate on a simplification of the general
planning problem called ‘theclassical planning problem’. Although not all realistic
problems can be modeled as a classical planning problem, they can help to solve more

1That is, the general planning problem is undecidable.

1

complex problems. In this paper we first give an overview of planning techniques for
this classical planning problem and techniques for extensions of this problem. Please,
skip this first section if you are already familiar with AI planning techiques. After this
introduction to AI planning, we briefly discuss coordination in a multi-agent context,
and we will introduce a way to organize current work on multi-agent planning by defin-
ing several phases in the multi-agent planning process (in Section 3). Finally, we will
describe some multi-agent planning techniques in more detail, and we conclude with
an outlook on open issues in this field.

2 AI Planning

In this section we give an overview of AI planning techniques. It will not come as a sur-
prise that AI planning techniques are techniques to search for a plan:forward planning
is a planning technique building a plan starting from the initial state,backward plan-
ningstarts from the goal states, andleast-commitment planningby constructs plans by
adding actions in a non-sequential order. Hereafter we discuss some advanced heuris-
tics to guide this search, which is quite useful since in general the (classical) planning
problem is very hard (see Theorem 8). Finally, we discuss some extensions of the clas-
sical planning problem, such as dealing with uncertainty, time, and limited resources
(fuel, capacity, money, etc.).

2.1 The classical planning problem

Theclassical planning problemcan be defined as follows (Weld, 1999):

Given

• a description of the known part of the initial state of the world (in a
formal language, usually propositional logic) denoted byI,

• a description of the goal (i.e., a set of goal states), denoted byG, and

• a description of the possible (atomic) actions that can be performed,
modeled as state transformation functions,

determine a plan, i.e., a sequence of actions that transforms each of the
states fitting the initial configuration of the world into one of the goal
states.

The formal language that was used for STRIPS (Fikes and Nilsson, 1971) is common
to most classical planning frameworks. This language is also used in Definition 6 to
formally define the classical planning problem.

Example 1. Suppose that initially (i.e., in all states of the world that match the de-
scription I), there is a taxi at a locationA, represented by a binary state variable
taxi(A), and a passenger at a locationB, represented bypassgr(B). In each of the
states described byG the passenger should be at a locationC, denoted bypassgr(C).
Furthermore, suppose that there are three actions that can transform (some part of) the
state of the world.

2

Key

G
I

a() action
set of initial states

set of goal states

G

I

unload(passgr)

move(B,C)

load(passgr)

move(A,B)

Figure 1: A sequence of actions (plan) leading from each of the initial states inI to
one of the goal states inG.

1. The taxi can move from one location to another:move(x, y) withx, y ∈ {A,B,C}.
This action requires that a prioritaxi(x) holds, and ensures that in the resulting
state¬taxi(x) andtaxi(y) hold.

2. The passenger can get in the taxi:load(p). This action requires a prioritaxi(x)
and passgr(y) and x = y, and in the resulting state both¬passgr(y) and
passgr(taxi) should hold.

3. The passenger can get out of the taxi:unload(). This action requirestaxi(x)
andpassgr(taxi), and results in¬passgr(taxi) andpassgr(x).

A plan that represents a solution to this problem is shown in Figure 1.

Remark 2. Note that it is not possible nor desirable to completely describe the state
of the world and everything that changes. We use the assumption that “all that is not
explicitly changed by an action remains unchanged” (Janlert, 1987) to deal with this
frame problem(Raphael, 1971). Consequently, we describe (frame) a state of the world
only by the relevant literals. Such a set of literals is called astate specification. Under
this assumption, the difference between ‘state’ and ‘state specification’ is irrelevant.
So often ‘state’ is used while ‘state specification’ is meant.

In STRIPS, the STanford Research Institute Problem Solver (Fikes and Nilsson,
1971), states are described using binary state variables, calledpropositions. Actions
or operators are specified by(i) conditions on propositions, calledpreconditions (ii)
propositions that are changed to ‘true ’ in the new state, calledadd effects, and(iii)

3

propositions that are changed to ‘false ’, called delete effects. Furthermore, goals can
be described by conditions on propositions.

The propositional STRIPS planning language has been formalized, and the com-
plexity of the problems that can be specified in this language has been analyzed by
(Lifschitz, 1987). The following formal treatment is based on a further analysis of
STRIPS planning instances performed by (Nebel, 2000).

To formally specify a propositional planning formalism, we need the following
concepts and notations. Given the set of all propositional atomsΣ, a literal overΣ is
an elements of Σ or its negation¬s. The set of all literals overΣ including⊥ (bottom,
to denote ‘false ’) and> (top, to denote ‘true ’) is denoted byΣ̂. For a set of literals
L ⊆ Σ̂ we define¬L to be the set of literals{¬l | l ∈ L}, where¬l ≡ l′ if l = ¬l′ and
l′ ∈ Σ. The set of all formulas is denoted byPROP , and defined as follows: ifp ∈ Σ
thenp ∈ PROP , and ifA,B ∈ PROP then¬A, (A ∨ B), (A ∧ B), (A → B), and
(A ↔ B) ∈ PROP .

Definition 3. (Nebel, 2000) Anoperatoro ∈ 2Σ × 2Σ̂ is defined by a preconditionpre
and its effectpost, denoted by〈pre, post〉, wherepre ⊆ Σ ⊆ Σ̂ is a set of propositional
atoms, andpost ⊆ Σ̂ is a set of literals.

We use the notationpre(o) andpost(o) to denote the precondition and the effect of
an operatoro, respectively. The propositional atoms in the precondition of an operator
must all be true in the states ∈ 2Σ̂ to which the operator is applied. LetO be the set of
all operators in a domain.

Definition 4. (Nebel, 2000) TheapplicationApp : 2Σ̂ × O → 2Σ̂ of an operator or
actiono to a state (specification)s is defined as2

App(s, o) =

 (s− ¬ post(o)) ∪ post(o) if s |= pre(o) ands 6|= ⊥ and
post(o) 6|= ⊥

{⊥} otherwise

That is, the negations of the literals in the effect clause will be removed, and the
literals themselves will be added to the states.

Using Definition 4, we can define the resultRes(s,∆) of applying a sequence of
operators∆ to a states.

Definition 5. The resultRes : 2Σ̂ × O∗ → 2Σ̂ of applying a sequence of operators
∆ = 〈o1, . . . , on〉 to a state (specification, see Remark 2)s is recursively defined by

Res (s, 〈〉) = s

Res (s, 〈o1, o2, . . . , on〉) = Res (App(s, o1), 〈o2, . . . , on〉)

Finally, Nebel defines a planning problem in propositional STRIPS as follows.

Definition 6. (Nebel, 2000) Aplanning problemin the propositional STRIPS formalism
is a four tupleΠ = (Σ, O, I, G) where

2We use the standard propositional entailment (|=) here.

4

• Σ is a countably infinite set of propositional atoms, called facts or fluents,

• O ⊆ 2Σ× 2Σ̂ is the set of all possible operators to describe state changes in this
domain,

• I ⊆ Σ̂ is the initial state, and

• G ⊆ Σ is the goal specification, i.e., the set of propositions that is to be satisfied.

Definition 7. A sequence of operators∆ = 〈o1, . . . , on〉 ∈ O∗ is called asolutionor
a planfor a planning instanceΠ = (Σ, O, I, G) iff Res(I,∆) |= G andRes(I,∆) 6|=
⊥.3

The propositional STRIPS formalism (denoted byS) requires complete state spec-
ifications, unconditional effects, and propositional atoms as the formulas in the precon-
dition list. This formalism can be extended in various ways:(i) state specifications may
be incomplete (SI), (ii) effects can be conditional (SC), (iii) formulas in preconditions
(and effect conditions) can be literals⊆ Σ̂ (SL), and(iv) the formulas in preconditions
(and effect conditions) can be arbitrary boolean formulas⊆ PROP (SB).

Theorem 8. (Nebel, 2000) Complexity of planning. The problem of deciding whether
a planexistsfor a given instance (i.e., theplan existence problem) is PSPACE-complete
for specifications in the propositional STRIPS formalism and for all combinations of
the four extensions of this language (SI , SC , SL, andSB) described above.

This result is from (Nebel, 2000), who in turn relies on a proof by (Bylander, 1994).
The idea behind this proof is as follows. Plan existence is in PSPACE because(i) a
state is described byn propositions, and thus there are at most2n states. Since any
plan can be conceived as a sequence of states,(ii) the maximal plan length needed to
transform an initial state into a goals state is at most2n. Therefore,(iii) the existence
of a plan of lengthp transforming a states1 into a states2 can be decided using an
algorithm that usesO (log(p)), hence polynomial, space: for any intermediate states3

decide plan existence both froms1 to s3, and froms3 to s2, recursively. Since each
state requiresO(n)-space and the depth of the recursion of this algorithm is at most
O (log(p)) = O(log(2n)) = O(n), the algorithm clearly runs in polynomial space.

The hardness of plan existence in Bylander’s proof is based on the fact that each
PSPACE problem can be translated into a planning problem.

Nebel also analyzes which instances of the different extensions of the planning
problem can be translated into each other, and which cannot. Figure 2 shows a graph
of these specialization relations between combinations of the problem extensions, indi-
cated by combinations of the subscriptsI, C,L, andB. An arrow from an extensionSL
(allow literals) to another extensionSB (allow arbitrary boolean formulas) means that
any planning problem specified inSL can be translated into a problem inSB in poly-
nomial time, while the plan size increases at most linearly in the size of the input.

Apart from a specialization relationship of all extensions of the STRIPS formalism,
Nebel’s most interesting results are(i) that incomplete state specifications and literals
in preconditions can be compiled to the basic STRIPS formalism where the plan size is

3We use the word ‘iff’ as a short hand for ‘if and only if’.

5

S

SC SI

SIC SLC SLI SB

SLIC SBC SBI

SBIC

SL

Figure 2: The specialization relationships of planning formalisms based on syntactic
restrictions (Nebel, 2000).

preserved, and(ii) that incomplete state specifications and literals in preconditions and
effect conditions can be compiled to the basic STRIPS formalism with conditional ef-
fects preserving plan size exactly, and(iii) that there are no other compilation schemes
preserving plan size linearly except those implied by the specialization relationship and
results(i) and(ii) .

There exist many different approaches to solve the classical planning problem that
make use of the STRIPS formalism and its extensions. Later on, we will discuss some
of these approaches in a multi-agent setting. To prepare for this discussion, in the
next section, we briefly discuss the most relevant approaches and we describe them as
variants of a general method based on the refinement of the set of all possible plans.
This generalization has been made by (Kambhampati, 1997).

2.2 Refinement planning

The search for a sequence of actions (a plan) to get from an initial state to a goal state
can be seen as a refinement of the set of all possible sequences (Kambhampati, 1997).
We can describe most existing (classical) planning algorithms using this unifying view
on planning. The unifying concept, representing a set ofcandidatesequences, is a
so-calledpartial plan. This partial plan is used to describe a set of partial solutions.
Planning algorithms are given by defining how a partial plan is modified such that in
the end all (partial) solutions represented by the partial plan are complete, feasible
solutions.

6

Definition 9. (Kambhampati, 1997) The syntax of apartial plan, usually denoted byPi,
for a planning problemΠ = (Σ, O, I, G) is a directed acyclic graph(V,E, IPC, PTC),
whereV is a set of the nodes representing the application of actions fromO, E ⊆
V × V is the set of directed edges representing the required precedences of these ac-
tions, andIPC andPTC are two kinds of auxiliary constraints:

• IPC ⊆ V × V × PROP is a set of interval preservation constraintsspecify-
ing that a formula should hold during a certain interval (between two actions).
Currently, the only used instantiations of such constraints are so-called causal
links.4 A causal linkoi

p→ oj specifies that the preconditionp of actionojshould
be an effect ofoi that may not be undone betweenoi andoj .

• PTC ⊆ V × PROP is a set ofpoint truth constraintsspecifying that a for-
mula should hold at a certain point before an action. In current planners these
constraints are only used to specify open preconditions of actions.

The semantics of a partial plan is the set of action sequences that(i) contain at least
the actions represented by the nodesV , and(ii) fulfill the precedence constraints im-
plied by the directed edgesE. Furthermore, these action sequences should satisfy(iii)
all interval preservation constraintsIPC, and(iv) the point truth constraintsPTC.
These action sequences are calledcandidateplans or sequences of a partial planPi,
denoted bycandidates(Pi).

TheIPC andPTC are especially useful if plans are not constructed bottom-up or
top-down. When actions are added in no particular order, somehow it must be stored
why a particular action is added at all (e.g., to meet the precondition of a subsequent
action), and, more importantly, it has to be prevented that another action undoes its
required result. This kind of information can be stored using the interval preservation
constraints. Point truth constraints specify which preconditions still have to be satisfied.
They can also be used to indicate at (or before) which point in a plan they need to be
fulfilled.

For some algorithms, intermediate results cannot be represented by one partial plan.
Therefore, we think in terms of sets of partial plans. We define the candidate plans of
a set of partial plansPS ascandidates(PS) =

⋃
Pi∈P candidates(Pi). Each subset

of candidates is represented by a partial planPi ∈ PS, called acomponent. Minimal
candidatesare those candidates that contain only actions that are included in a partial
plan (i.e., that are represented inV).

Given a partial plan, we need to define when a plan (sequence) is one of the candi-
dates represented by this partial plan. Such a sequence is called asafe linearization.

Definition 10. (Kambhampati, 1997) A sequence∆ = 〈o1, . . . , on〉 ∈ O∗ is called a
safe linearizationof a partial planPi = (V,E, IPC, PTC), if

• there exists a bijective functionf : V → ∆, such that anyv ∈ V represents the
application of operatorf(v) ∈ ∆ (v ≡ f(v)),

4Causal links are used by least-commitment planners (Weld, 1994). These planners are briefly discussed
at the end of this section.

7

move(A,B)

load(passgr1)

load(passgr2)

unload(passgr1)

I
in(passgr1, taxi)
(PTC) at(taxi, A)

(IPC) interval preservation

action

constraint (IPC)

Key

move

point truth constraint
(PTC)

precedence relation
(A)

Figure 3: A partial plan describing all candidates that contain at least the four given
actions, in the order given by the precedence relation and matching the interval preser-
vation constraints and the point truth constraints.

• for anyv, w ∈ V , v 6= w, if there is a path fromv to w in (V,E) thenf(v) <
f(w) in ∆,

• for any(v, w, ϕ) ∈ IPC , if oi = f(v) < f(w) = oj and ifRes (I, 〈o1, . . . , oi〉) |=
ϕ thenRes (I, 〈o1, . . . , oj−1〉) |= ϕ, and

• for any(v, ϕ) ∈ PTC , Res (I, 〈o1, . . . , f(v)〉) |= ϕ.

Example 11. A taxi has to take two passengerspassgr1 andpassgr2 from locationA
to locationB. Initially, both the taxi and the passengers are at locationA. The partial
plan that describes the set of candidate plans after some additional refinements (i.e.,
the addition of twoload actions, amoveaction, and anunload action) is depicted
in Figure 3. After some more refinements, each of the candidates should be a correct
sequence of actions from the initial state to one of the desired goal states (i.e., where
at(passgr1, B) andat(passgr2, B) hold).

A planner can reduce the set of candidate plans represented by a set of partial plans,
by (i) adding actions,(ii) adding precedences on these actions, and(iii) adding auxiliary
constraints to one or more of the partial plans. A technique to find suitable refinements
is called arefinement strategy, denoted byR.

Proposition 12. (Kambhampati, 1997) Refinement. A refinement strategyR refines
(i.e., reduces) the set of candidate plans, represented by a set of partial plansPS: so,
if PS′ = R(PS) thencandidates(PS′) ⊆ candidates(PS).

To evaluate the effectiveness of such strategies for refining the set of candidate
plans, we look at specific properties. For example, it is important to know whether a
strategy preserves all possible solutions (i.e., is complete).

8

Definition 13. A refinement strategyR to find a set ofsolutions is called

1. progressiveiff candidates(R(PS)) ⊂ candidates(PS) for any set of partial
plansP ,

2. completeiff solutions ∩ candidates(R(PS)) = solutions ∩ candidates(PS),
and

3. systematiciff the set{candidates(Pi) | Pi ∈ R(PS)} is a partition ofcandidates
(R(PS)).

Although planning algorithms are implemented in many different ways, they can
be rewritten in an alternative, uniform way, based on the theory of refining a set of
potential solutions (Kambhampati, 1997). The structure they then have in common
can be found in Algorithm 14. This algorithm describes how a solutionresult can be
obtained from a set of partial plansPS. Each time the function REFINE is executed,
and none of the minimal candidates is a solution, a refinement strategy is selected and
applied to one of partial plansP . Then repeatedly an element of the resulting setPS
is selected, and this function REFINE is called recursively using this element. Once a
solution has been found, this process stops, and the result is returned.

Algorithm 14. (REFINE (P,Π))

Input: A partial plan P and a problem Π.

Output: A minimal candidate of P that is a solution to Π or ‘fail‘.

begin
1. if a minimal candidate c of P is a solution to Π then

1.1. return c

2. else
2.1. result := fail
2.2. select a refinement strategy R
2.3. PS := R(P)
2.4. while PS 6= ∅ and result = fail do

2.4.1. non-deterministically select an element Pi of PS
2.4.2. PS := PS \ {Pi}
2.4.3. result := REFINE(Pi,Π)

2.5. return result

end

Example 15. The planning algorithm Fast Forward (FF) (Hoffmann and Nebel, 2001)
starts with the initial state and an empty sequence of actions (plan). Repeatedly, the
sequence is extended with actions, always adding to the end of the sequence. For each
of the possible extensions of the sequence (first with one action, then with two actions,

9

etc.), a heuristic value is calculated. The first of the possible extensions that leads to a
state with a lower heuristic value than the current state is chosen.

The heuristic uses the relaxation that no subsequent action has negative effects.
Under this assumption, a so-called relaxed plan can be constructed where all actions
with satisfied preconditions are added in parallel. The relaxed plan is constructed until
the goal state is reached. The heuristic value is the cost of all actions in the relaxed
plan that are needed to reach the goal state.

Although FF does not use the presented refinement framework, it is in fact a form
of refinement planning with the following refinement strategyRFF (which can be used
in step 2.3 in Algorithm 14). Given one partial plan that represents a set of possible
solutions, a new partial plan is constructed by extending this partial plan at the end.
The extension is selected using the heuristic described above. See also Algorithm 16.
Note that this particular refinement strategy uses only asingletonset of partial plans
to represent of the set of candidates.

Algorithm 16. (RFF(PS))

Input: A singleton set of partial plans PS.

Output: A singleton set of partial plans that lead to a state with a lower heuristic cost.

begin
1. h := the heuristic costs of the current end state
2. ∆ := the action sequence of a minimal candidate of PS

3. h′ := ∞
4. while h′ ≥ h do

4.1. breadth-first select a sequence of actions ∆′ to extend ∆
4.2. h′ := the heuristic value of the end state of ∆ + ∆′

5. return the partial plan that represents ∆ + ∆′

end

Refinement strategies such asRFF can be roughly divided into three categories.

1. Progressionor forward planning methodsconstruct (partial) plans bottom-up:
an action to be executed is selected and added to the end of the partial plan. The
action-selection mechanism varies, but usually a heuristic is used to determine a
next action to execute. Some methods do not use backtracking: once an action
is selected, it will not be removed from the partial plan. Such planners are not
complete, but can often find correct plans much faster. Examples of such plan-
ners are FF (Hoffmann and Nebel, 2001), HSP (Bonet and Geffner, 2002), and
Prodigy (Veloso et al., 1995).

2. Regression refinement methods, also called backward planning methods, con-
struct (partial) plans top-down: starting from the description of the set of end

10

states, they determine an action to reach such a state from a states that is pre-
sumably ‘closer’ to the initial state (i.e., a shorter sequence of actions is needed
to reach this states). The STRIPS planner (Fikes and Nilsson, 1971) is one of
the first planners that use this technique. Many others use some of the ideas from
this technique, for example as a heuristic for progression refinement, as in GRT
(Refanidis and Vlahavas, 2001).

An advantage of both progression and regression refinement is that these meth-
ods can describe a partial plan by a sequence of actions and a description of the
state reached last, and that they can search in thestate spaceto find what action
to add next, and do not need a (more complex)plan spacerepresentation. Given
such a state-space representation one can easily see whether a plan is valid by
comparing the final state of the plan to the requirements of the goal state, or by
comparing the first state of a plan to the initial state, respectively.

3. The third category,least-commitment planning(Weld, 1994), really needs the
complicated plan space representation of the partial plans as used in the refine-
ment framework, because this type of planning refines plans not only by extend-
ing the prefix or the postfix of the plan, but also adds constraints on the possible
solutions in many ways. This category is sometimes also calledpartial order
planning, because during the construction of a plan the order of the actions in
the plan is partial, while the order of the actions in a partial plan based on for-
ward planning is usually complete. The planners Noah (Sacerdoti, 1975) and
POP (Weld, 1994) fit into this category.

Some approaches use a slightly different variant of a partial plan, called adisjunctive
partial plan. The nodes in the disjunctive partial plan may consist of several actions.
The semantics of such a node is that exactly at that point, one of those actions is to be
executed. For example Graphplan (Blum and Furst, 1997) uses a form of disjunctive
planning.

Example 17. The Graphplan algorithm consists of two phases. First a planning graph
is constructed that represents all possible solutions that reach the goal state in a mini-
mum amount of planning steps. Then a solution is extracted from this planning graph.

The planning graph is a directed, layered graph. An example of such a graph
is shown in Figure 4. In this graph two types of layers are interleaved: proposition
layers and action layers. A proposition layer consists of nodes that each represent an
atom or the negation of an atom. The first layer is a proposition layer representing the
initial state. An action layer contains a node for each possible action. The nodes are
connected by three types of arcs. Precondition arcs connect the action to the atoms
of its precondition of a previous layer. Add arcs connect an action to the nodes of the
next layer, representing an atom that is a direct consequence of the postcondition of
the action, and delete arcs connect actions to the nodes representing atoms that are
disabled by the action. Propositions are always reproduced in the next layer by so-
called “no-op” actions. Except when another action is chosen that has a delete effect
for this proposition, this leads to a conflict.

Such mutual exclusions (mutexes) are represented explicitly in Graphplan. These
mutexes indicate for each action layer which actions cannot be fulfilled at the same time

11

Key

action

proposition

pre/post-
condition arc

no-op

Figure 4: Graphplan uses a plan graph consisting of proposition layers and action
layers.

(in the same layer). To find a correct plan, Graphplan builds the graph while searching
for a proposition layer that implies the goal state. Backwards from this goal state the
mutual exclusion relations are verified. If it is impossible to satisfy all mutexes, the
plan graph is extended with another layer and the process is repeated.

2.3 Extended planning problems

Over the last few years many extensions of the classical planning problem have been
studied: dealing with time (Do and Kambhampati, 2001; Penberthy and Weld, 1994;
Smith and Weld, 1999), costs (or utility maximization) (Haddawy and Hanks, 1998),
limited resources (Koehler, 1998; Wolfman and Weld, 2001), and planning under un-
certainty (Boutilier et al., 1999). Of these extensions, planning under uncertainty is
maybe the most relevant when multiple agents are acting in the same environment.
Such domains introduce several types of uncertainty.

Firstly, actions can have probabilistic effects: for example, upon moving to another
location by train, we know that we have 85 percent chance of actually reaching our
destination in time, 10 percent of getting stuck somewhere, and 5 percent chance of
getting involved in an accident. When the outcomes of actions can be (partially) ob-
served, a plan can be constructed including sensing actions and conditional branches.
This problem is calledcontingent planning. This leads to a second type of uncertainty.

The sensing actions may fail as well or may not be able to observe the world com-
pletely. The unobservable, partially observable, and fully observable domain versions
of this problem are EXPTIME-complete, EXPSPACE-complete, and NEXPTIME-
complete, respectively (Bernstein et al., 2000; Haslum and Jonsson, 1999). The addi-
tional complexity over propositional STRIPS plan existence (Theorem 8) comes from
the uncertain results of actions. Not only is the length of a plan exponential, now each
plan can have an exponential number of resulting end states.

Thirdly, planning in a domain where we lack even a probability distribution over

12

the possible outcomes of a non-deterministic operator, is callednon-deterministic plan-
ning or conformant planning. So, conformant planning is the problem of finding, in a
nondeterministic domain, a sequence of actions which will achieve the goal for all pos-
sible contingencies. The complexity of a conformant planning problem is EXPSPACE-
complete, i.e., strictly higher than that of classical planning (Haslum and Jonsson,
1999).

Theorem 18. (Haslum and Jonsson, 1999) Complexity of conformant planning. De-
ciding the existence of a conformant plan (sequence) for a problemΠ with an unob-
servable propositional domain and actions is EXPSPACE-complete.5

In a multi-agent system, agents often perform actions unexpectedly and indepen-
dently of each other. When each agent is planning on its own without communicat-
ing and coordinating with the other agents, each agent has to solve some sort of non-
deterministic planning problem. Theorem 18 and the complexity analysis of contingent
planning show that non-determinism in planning is EXPTIME-hard. So we can con-
clude that such an individual approach to multi-agent planning is EXPTIME-hard.

Corollary 19. An individual approach to planning in multi-agent systems using either
conformant or contingent planning is EXPTIME-hard.

However, by communicating parts of plans of the agents, we can reduce or even in
some domains remove the uncertain effects of actions. Such approaches to planning in
multi-agent systems are discussed in the remainder of this paper.

3 Coordinated planning

One may wonder why we need to study multi-agent planning problems and techniques
as a separate topic. Is not the multi-agent case covered by the general discussions of
planning? The answer isno, because in real-life problems, we deal with multiple agents
having their own goals, and it is often impractical or undesirable to create the plan for
all agents centrally. These agents may be people or companies simply demanding
to plan their actions themselves, or refusing to make all information necessary for
planning available to someone else. Consequently, such agents want to be able make
their own plans independently of what the other agents are planning to do. This itself is
not a compelling reason to differentiate between planning and multi-agent planning, but
in many cases dependencies between the tasks of the agents make independent planning
impossible. That is, if the agents do not take into account the dependencies between
their plans, then they might come into conflict when they try to execute their plans. To
resolve their dependencies, agents mustcoordinatetheir efforts. In the (multi-agent)
literature, several definitions for coordination are given. A concise and clear definition
is from (Malone and Crowston, 1991):

5The class EXPSPACE is the class of decision problems that can be solved using an amount of space
bounded by2p(n), where p is a polynomial andn is the input length. It is known that the class
EXPTIME⊆EXPSPACE contains problems that are intractable (Garey and Johnson, 1979, Theorem 7.16
in), even if P=NP.

13

Coordinationis the act of managing interdependencies between activities.

Another, more planning-agent specific definition is due to (Jennings, 1996):

Participation in any social situation should be both simultaneously
constraining, in that agents must make a contribution to it, and yet en-
riching, in that participation provides resources and opportunities which
would otherwise be unavailable.Coordination, the process by which an
agent reasons about its local actions and the (anticipated) actions of other
agents to try to ensure the community acts in a coherent manner, is the key
to achieving this objective.

Clearly then, the multi-agent planning problem has both a planning and a coordination
component. We therefore define the multi-agent planning problem as follows:

Definition 20. Themulti-agent planning problemis the following problem: Given a
description of the initial state, a set of global goals, a set of (at least two) agents, and
for each agent a set of its capabilities and its private goals, find a plan for each agent
that achieves its private goals, such that these plans together are coordinated and the
global goals are met as well.

Summarizing, the following statement perfectly captures our concept of multi-
agent planning:

Multi-agent planning = planning + coordination

In the remainder of this section we will first discuss the nature of the coordination
problem, and then discuss the various approaches that combine the planning and the
coordination part.

3.1 Coordination in multi-agent systems

To characterize multi-agent coordination problems, we identify several key character-
istics. The first is the nature of the dependencies that necessitate the coordination. One
may wonder whether there are a number of common problems that underlie any coor-
dination situation. Having identified the nature of the coordination problem, we then
have to choose the mechanism to solve the coordination problem. Again, we might ask
whether there exist general coordination mechanisms that can be applied to a variety of
situations. We are also interested in determining which coordination mechanism is the
best for a given situation, assuming we can choose from a number of mechanisms. The
third aspect is the applicability and usability of a given coordination mechanism. Any
multi-agent system designer must make certain assumptions — for instance, about the
number of agents in the system environment and the rate of change in the environment
— about the environment in which the agents will operate. Hence, we need to know
the factors determining the applicability of the coordination mechanism.

(Jennings, 1996) and (Nwana et al., 1996) state five reasons that might necessitate
coordination in multi-agent systems. The first two are very general in nature and do
not directly refer to any characteristic of aninteraction situation, the other points do
refer to characteristics of the interaction situation.

14

1. Prevent anarchy or chaos:As an example they state that in British Telecom, no
one in the company is aware of the activities of all 130000 employees. Conse-
quently, agents have only local views, which is bound to lead to conflicts without
coordination.

2. Efficiency:Even if agents can work independently, sometimes working together
means being able to solve problems faster.

3. Meeting global constraints:If there are global budget limits, then agents must
make agreements so that they do not inadvertently exceed the budget.

4. Distributed information, expertise or resources:Often, a task cannot be per-
formed (or performed efficiently) by a single agent alone. If the required capa-
bilities are distributed among the agents, coordination is necessary.

5. Dependencies between the agents’ actions:For instance, different tasks may
need the same resources or there may exist a precedence relation between tasks.

Of course, the above categories are not orthogonal; the first four are all, in fact, deriv-
able from the fifth.

In their discussion of their well-known multi-agent planning framework, the GPGP-
planning framework, (Decker and Lesser, 1994) summarize the need for coordination
from a different point of view. Whereas Jennings and Nwana state reasons for coor-
dination due to the characteristics of the interaction situation, Decker and Lesser state
reasons for coordination based on the point of view of an individual agent. Decker and
Lesser use the definition of coordination given by Malone and Crowston. That is, that
coordination is the act of managing interdependencies between activities. Using this
definition as a context, Decker and Lesser say that there is a coordinationproblemif
one of the following conditions is met:

• The agent has a choice of actions and that choice affects performance.

• The order in which activities are carried out affects performance.

• The time at which actions are executed affects performance.

(Malone and Crowston, 1991, 1993) summarize the need for coordination in their
coordination definition — to manage interdependencies between activities. The focus
of their research is finding general coordinationmechanismsthat can be applied in
coordination situations of different research disciplines. Their research is characterized
by the following questions they raise:

Are there fundamental coordination processes that occur in all coordi-
nated systems?. . . How far can we get by analyzing very general coordi-
nation processes and when will we find that most of the important factors
are specific to coordinating a particular kind of task? For example, are
there general heuristics for coordination that are analogous to the gen-
eral problem-solving heuristics studied in cognitive science and artificial
intelligence?

15

They identify the following coordination processes that occur in many domains:

• coordinated goal selection and decomposition,

• coordinated resource allocation, a special case of which is task assignment,

• coordinated sequencing (one activity after the other) and synchronizing (activi-
ties at the same time).

Of course, the above list of processes represent classes of coordination mechanisms;
there is not one task assignment protocol or one goal decomposition algorithm.

(Durfee, 2001) identifies factors influencing the usability of specific coordination
mechanisms. That is, he identifies the factors that determine how far the applicability
of specific coordination mechanisms reach — and he concludes that the applicability
of every coordination mechanism has its limits:

. . . various coordination strategies for computational agents have emerged
over the years. It does not seem possible, however, to devise a coordina-
tion strategy that works well under all circumstances; if such a strategy
existed, human societies would substitute it for the myriad constructs em-
ployed today such as corporations, governments, markets, teams, com-
mittees, professional societies, and mailing groups. Whatever strategy we
adopt, certain situations can stress it to the breaking point.

Durfee identifies three varying properties (dimensions) of an interaction situation:
The agent population, the task environmentand thesolution properties. For each of
these dimensions, he identifies the three most obvious properties that impact the us-
ability of a coordination strategy.

Agent population :

• Quantity: The number of agents.

• Heterogeneity:For example, agents can have different capabilities, internal
architectures and communication languages.

• Complexity:Complexity refers to how hard it is to predict what aversatile
agent will do, i.e., howpredictablethe agents are.

Task environment :

• Degree of interaction:Some issues concern large groups of agents, such as
a resource that regulates exclusive access to a blackboard datastore, other
issues concern small groups agents, such as collision avoidance.

• Dynamics: The rate at which the environment changes, typically due to
events outside the influence of the agents.

• Distributivity: For instance, tasks can originate centrally or distributively.

Solution properties :

16

• Quality: We can measure the quality of a solution by judging how well it
coordinates agent interactions (e.g. near optimal or merely acceptable) or
how efficient it is in utilizing agent resources.

• Robustness:To what extent do changes in the environment invalidate the
plans or goals of agents?

• Overhead limitations:Communication bandwidth may be limited.

Scaling up along combinations of these dimensions poses even greater challenges. For
instance, the delays associated with propagating information in a highly distributed
setting compound the difficulties that arise in a dynamic environment.

3.2 Approaches to multi-agent planning

Multi-agent planning techniques cover quite a range of solutions to different parts of
the problem. In this section we structure existing work using the phases in the process
of solving a multi-agent planning problem. In general, the following phases can be
distinguished (generalizing the main steps in task sharing by (Durfee, 1999)).

1. Refine the global goals or tasks until subtasks remain that can be assigned to
individual agents (global task refinement).

2. Allocate this set of subtasks to the agents (task allocation).

3. Define rules or constraints for the individual agents to prevent them to produce
conflicting plans (coordination before planning).

4. For each agent: make a plan to reach its goals (individual planning).

5. Coordinate the individual plans of the agents (coordination after planning).

6. Execute the plans and synthesize the results of the subtasks (plan execution).

Not always all phases of this general multi-agent planning process need to be included.
For example, if there are no common or global goals, there is no need for phase 1 and 2,
and possible conflicts can be dealt with on forehand (in phase 3) or afterwards (in phase
5). Also, some approaches combine different phases. For example, agents can already
coordinate their plans while constructing their plans (combination of phase 4 and 5),
or postpone coordination until the execution phase (combination of phase 5 and 6), as,
e.g., robots may do when they unexpectedly encounter each other while following their
planned routes.

For each of the phases that can be distinguished in a multi-agent planning process,
we describe some of the currently most well-known approaches that can be used to deal
with the issues arising in such a phase.

17

Global task refinement

In the first phase, the global tasks or goals are refined such that each remaining task can
be done by a single agent. Apart from single-agent planning techniques such as HTN
(Erol et al., 1994), or non-linear planning (Penberthy and Weld, 1992; Sacerdoti, 1975),
special purpose techniques have been developed to create a global multi-agent plan.
Such so-called centralized multi-agent planning approaches in fact use the classical
planning framework to construct and execute multi-agent plans (Katz and Rosenschein,
1989; Pednault, 1987).

Task allocation

The centralized multi-agent planning methods mentioned before usually also take care
of the assignment of tasks to agents (phase 2). There are, however, many other methods
to establish such a task assignment in a more distributed way, giving the agents a higher
degree of autonomy and privacy, e.g., via complex task allocation protocols (Shehory
and Kraus, 1998) or auctions and market simulations. An auction is a way to make sure
that a task is assigned to the agent that attaches the highest value (called private value)
to it (Walsh et al., 2000; Wellman et al., 2001). A (Vickrey, 1961) auction is an exam-
ple of an auction protocol that is quite often used. In a Vickrey auction each agent can
make one (closed) bid, and the task is assigned to the highest bidder for the price of the
second-highest bidder. This auction protocol has the nice property that bidding agents
are stimulated to bid their true private value (i.e., exactly what they think it’s worth to
them). Market simulations and economics can also be used to distribute large quanti-
ties of resources among agents (Walsh and Wellman, 1999; Wellman, 1993; Wellman
et al., 1998). For example, in (Clearwater, 1996) it is shown how costs and money are
turned into a coordination device. These methods are not only used for task assignment
(phase 2), but can also be used for coordinating agents after plan construction (phase
5). In the context of value-oriented environments, game-theoretical approaches (where
agents reason about the cost of their decision making (or communication) become more
important. See, for example, work by Sandholm, supported by results from a multiple
dispatch center vehicle routing problem (Sandholm and Lesser, 1997). An overview of
value-oriented methods to coordinate agents is given in (Fischer et al., 1998). Espe-
cially Markov decision processes give an interesting opportunity to deal with a partially
observable world as well (Pynadath and Tambe, 2002).

Coordination before planning

In phase 3 the agents are coordinated before they even start creating their plans. This
can be done, for example, by introducing so-called social laws. A social law is a
generally accepted convention that each agent has to follow. Such laws restrict the
agents in their behavior. They can be used to reduce communication costs and planning
and coordination time. In fact, the work of (Yang et al., 1992) and (Foulser et al., 1992)
about finding restrictions that make the plan merging process easier, as discussed in the
previous section, is a special case of this type of coordination. Typical examples of
social laws in the real world are traffic rules: Because everyone drives on the right side

18

of the road (well, almost everyone), virtually no coordination with oncoming cars is
required. Generally, solutions found using social laws are not optimal, but they may be
found relatively fast. How social laws can be created in the design phase of a multi-
agent system is studied by (Shoham and Tennenholtz, 1995). (Briggs, 1996) proposed
more flexible laws, where agents first try to plan using the strictest laws, but when a
solution cannot be found agents are allowed to relax these laws somewhat.

Another way to coordinate agents is to figure out the exact interdependencies be-
tween their tasks beforehand. Prerequisite constraints can be dealt with centrally using
existing planning technology (such as partial order planning (Weld, 1994, among oth-
ers)) by viewing these tasks as single-agent tasks. More recently, an approach has been
proposed to deal with interferences (such as shared resources) between the goals of one
agent (Thangarajah et al., 2003).

Coordination before planning can also be used to coordinate competitive agents
that insist on their planning autonomy. Here, the problem is that we have a set of
interrelated (sub)goals that have to be reached by a set of planning agents, that do
not want to be interfered during their planning activity. That is, each of the agents
requires full planning autonomy, but at the same time we have to be sure that whatever
(sub) plan they will construct to solve their part of the problem, these sub plans can
be coordinated seamlessly without requiring replanning. Planning problems like these
often occur in multi-modal transportation problems: several parties have to ensure that
packages are transported from their source locations to their destinations. The planning
agents are prepared to carry out their part of the job if it can be guaranteed that they
will not be interfered by the activities of other agents.

It is clear that most of those planning problems cannot be decomposed into inde-
pendent subproblems without changing the original planning problem. In (ter Mors
et al., 2004) a preplanning coordination method is described that adds a minimal set of
additional constraints to the subgoals to be performed in order to ensure a coordinated
solution by independent planning.

Individual planning

The fourth phase consists of individual planning for each of the agents. In principle,
any planning technique can be used here, and different agents may even use other tech-
niques. There are a couple of approaches that integrate planning (phase 4) and the
coordination of plans (phase 3 and 5). In the Partial Global Planning (PGP) framework
(Durfee and Lesser, 1987), and its extension, Generalized PGP (Decker and Lesser,
1992, 1994), each agent has a partial conception of the plans of other agents using a
specialized plan representation. In this method, coordination is achieved as follows. If
an agent A informs another agent B of a part of its own plan, B merges this information
into its own partial global plan. Agent B can then try to improve the global plan by, for
example, eliminating redundancy it observes. Such an improved plan is shown to other
agents, who might accept, reject, or modify it. This process is assumed to run concur-
rently with the execution of the (first part of the) local plan. PGP has first been applied
to the distributed vehicle monitoring test bed, but, later on, an improved version has
also been shown to work on a hospital patient scheduling problem. Here (Decker and
Li, 2000) used a framework for Task Analysis, Environment Modeling, and Simulation

19

(TAEMS) to model such a multi-agent environment. An overview of the PGP related
approaches is given by (Lesser et al., 1998). (Clement and Barrett, 2003) improved
upon this PGP framework by separating the planning algorithm from coordinating the
actions, using a more modular approach called shared activities (SHAC).

Coordination after planning

A large body of research focused on what to do after plans have been constructed sep-
arately (phase 5). These plan merging methods aim at the construction of a joint plan
for a set of agents given the individual (sub) plans of each of the participating agents.
(Georgeff, 1983, 1988) was one of the first to actually propose a plan-synchronization
process starting with individual plans. He defined a so-called process model to for-
malize the actions open to an agent. Parts of such a process model are the correctness
conditions, which are defined on the state of the world and must be valid before exe-
cution of the plan may succeed. Two agents can help each other by changing the state
of the world in such a way that the correctness conditions of the other agent become
satisfied. Of course, changing the state of the world may help one agent, but it may
also interfere with another agent’s correctness conditions (Georgeff, 1984).

(Stuart, 1985) uses a propositional temporal logic to specify constraints on plans,
such that it is guaranteed that only feasible states of the environment can be reached.
These constraints are given to a theorem prover to generate sequences of communi-
cation actions (in fact, these implement semaphores) that guarantee that no event will
fail. To both improve efficiency and resolve conflicts, one can introduce restrictions
on individual plans (in phase 3) to ensure efficient merging. This line of action is pro-
posed by (Yang et al., 1992) and (Foulser et al., 1992), and can also be used to merge
alternative plans to reach the same goal.

Another approach to merging a set of plans into a global plan deals with problems
arisen from both conflicts and redundant actions by using the search method A* and a
smart cost-based heuristic: (Ephrati and Rosenschein, 1993) showed that, by dividing
the work of constructing sub plans over several agents, one can reduce the overall
complexity of the merging algorithm (Ephrati and Rosenschein, 1994).

In other works on plan merging, (Ephrati et al., 1995a; Rosenschein, 1995) pro-
pose a distributed polynomial-time algorithm to improve social welfare (i.e., the sum
of the benefits of all agents). Through a process of group constraint aggregation, agents
incrementally construct an improved global plan by voting about joint actions. They
even propose algorithms to deal with insincere agents and to interleave planning, coor-
dination, and execution (Ephrati and Rosenschein, 1995).

An approach that considers both conflicts and positive relations is proposed by (von
Martial, 1989, 1990, 1992). He presents plans hierarchically, and the top level needs
to be exchanged among the agents to determine such relations. If possible, relations
are solved or exploited at this top level. If not, a refinement of the plans is made, and
the process is repeated. For each specific type of plan relationship, a different solution
is presented. Relations between the plans of autonomous agents are categorized. The
main aspects are positive/negative relations, (non) consumable resources, requests, and
favor relationships.

20

Recently, (Tsamardinos et al., 2000) succeeded in developing a plan merging al-
gorithm that deals with both durative actions and time. They construct a conditional
simple temporal network to specify (temporal) conflicts between plans. Based on this
specification, a set of constraints is derived that can be solved by a constraint solver.
The solution specifies the required temporal relations between actions in the merged
plan. One of the problems with the plan merging approaches described above is that
one agent may become dependent on another, while this was in the beginning not the
case at all.

Finally, (Cox and Durfee, 2003) describe how to maintain the autonomy, while still
being able to use results from other agents to improve the efficiency. Basically, their
idea is to add these dependencies conditionally to the plan: if the other agent succeeds,
this more efficient branch of the plan can be executed; otherwise the normal course of
action can still be followed.

Plan execution

We consider the sixth phase to be of a slightly different order and a bit off-topic. (This
in fact includes a vast body of work such as on reactive agents and behavior models.)

4 Multi-agent planning systems

In this section, we discuss three approaches to planning and coordination from the
multi-agent literature in more detail — one approach in which coordination occurs
prior to planning (phase 3), one in which planning and coordination are interleaved
(phase 4), and one in which agents first make their own plans, and then performplan
merging(phase 5).

4.1 Coordination through filtering

(Ephrati et al., 1995b) distinguish two approaches to multi-agent coordination.Ex-
plicit coordinationinvolves agents reasoning about their interactions and negotiations.
A problem with explicit coordination is that it can be extremely time-consuming, which
can be impractical in dynamic domains. With the second approach,implicit coordina-
tion, agents follows ‘local rules of behaviour’ that ensure that agents can operate with-
out having to worry about interference from other agents. Social laws are an example
of implicit coordination.

Ephrati’s paper deals with implicit coordination in the form ofmulti-agent filter-
ing. Multi-agent filtering is an extension of single-agent filtering, which was a strategy
designed for agents in dynamic environments. An agent using a single-agent filtering
strategy has set a set of goals. Due to changes in the environment, opportunities arise
to take alternative or additional action. A filtering strategy filters out thoseoptions
that are incompatible with the agent’s current goal. A multi-agent filtering strategy
bypasses options that are incompatible with the goals ofother agents. Ephrati et al.
ask themselves the question whether rational agents should employ a filtering strategy,

21

since bypassing options for the sake of other agents effectively reduces the number of
possible actions for the filtering agent.

Filtering strategies can be augmented with an override mechanism. If an option in-
terferes with its own or other agents’ goals, but it looks particularly promising, then the
option can be taken into deliberation, the same as non-conflicting options. The override
mechanisms is based on a threshold value. Abold agent will not consider many new
options (he will have high threshold), acautiousagent will use a low threshold value.

The notion ofinterferencein this paper differs from the ‘standard’ notion of in-
terference that e.g. (Ephrati and Rosenschein, 1993) use, where for instance the pre-
conditions for one action must not be undone by the post-conditions of another action.
Instead, the authors identify a single type of conflict situation in their example domain,
the multi-agent tileworld domain. In the tileworld domain, there is a map (grid) that is
littered with tiles. Objects (holes, tiles, obstacles, etc.) appear and disappear dynami-
cally and agents receive payment for filling holes with tiles. Conflict is defined as two
agents trying to fill the same hole.

For this domain, several filtering strategies are presented. One filtering strategy,
Static geographic filtering, is based on the location of the agents and the location of the
holes. Agents are assigned non-overlapping portions of the map and they filter out any
options of fillings holes that are not in their region. Using the filtering strategyIntention
posting, agents must post on a blackboard their intention to fill a hole. Agents bypass
options of filling holes that another agent intends to fill.

To answer the question of whether employing a filtering strategy is rational, experi-
ments where run where a number of agents, from one to all, employ a filtering strategy
(static geographic) and all others do not. Using filtering proved the dominant strategy,
because whatever the number of agent using filtering, the agents using filtering had, on
average, the highest utility. Ephrati et al. do not, however, give any evidence that this
conclusion can be generalized to other domains. Indeed, even their claim that filtering
is the dominant strategy in the tileworld domain is insufficiently supported, since they
do not precisely specify the strategy used by agentsnot using a filtering strategy.

4.2 Generalized Partial Global Planning

The Partial Global Planning (PGP) (Durfee, 1991) framework is perhaps one of the
most influential approaches in distributed artificial intelligence. In the PGP frame-
work, agents cooperate because no agent has complete information. PGP assumes a
cooperative distributed problem solving environment (CDPS, these days referred to
as simply DPS, which contrasts with multi-agent systems (MAS), where agents are
self-interested), where agents are willing to help each other without any compensation.
For CDPS environments, Durfee and Lesser identify four categories of coordination
techniques, all of which are encompassed in PGP.

1. Contracting:The distributed problem solving process is viewed as one big pro-
cess and many potential solvers, such as in parallel computing. The goal of
coordination is to utilize the problem solvers to the utmost. In case agents can
execute their tasks independently, then contracting (which redistributes tasks)
always has positive utility.

22

2. Result-sharing:Result-sharing concentrates on domains where tasks are inher-
ently distributed, but the problems arising for one agent may be related to prob-
lems arising for other agents.

3. Organizing:Organizational knowledge about e.g. agents’ roles and responsibil-
ities can help agents decidewhat information to communicate towhichagents.

4. Planning: Traditional planning in distributed artificial intelligence has focused
on avoiding resource conflicts. If agents can act independently, the focus is on
cooperation.

PGP is geared towards a particular kind of multi-agent domain, that of distributed
sensor networks. In their paper, a distributed network of acoustic sensors monitoring
vehicle movement is used as the running example. The goal of this network is to pro-
vide a consistent view of vehicle movements. In order to do so, agents must interpret
their sensor data. Because there is too much data (in particular, too much noise), ex-
haustively analyzing the sensor inputs is impractical. Fortunately, interrelationships
between the data of other agents mean that by sharing information, it is possible to
interpret the data accurately and timely. More specifically, coordination techniques for
distributed sensor networks must allow agents to:

• instruct (or propose) other agents to collect specific data (for instance monitor a
certain road),

• determine which information to send to whom and when,

• cooperate in other ways. For instance, an agent who has no data of himself to
interpret can be put to work analyzing data of other agents.

Dynamic sensor networks are highly dynamic environments and different PGP co-
ordination techniques are used in different circumstances. If, however, we pretend for a
moment that the environment is static, then the following four coordination techniques
are used subsequently:

1. Local planning: An agent makes very rough characterizations about all of the
possible interpretations of its dataset, and makes tentative plans for all these
interpretations. A plan represents future actions at two levels of abstraction.
At the high level of abstraction, it outlines the major steps; at the low level of
abstraction, it details the actions for the next major step.

2. Communication with other agents:To know what information to send to whom
and when, PGP employs two types of organizations. Thetask-levelorganization
defines the roles and responsibilities of agents with regard to performing tasks.
Themeta-levelorganization defines authority roles, that is, some agents may give
orders to other agents.

3. Initializing a Partial Global Plan:To integrate the plans from other agents with
his own plan, an agent will try to relate the goals of one plan with the goals
of another agent. Goals can be related in various ways. An example of a goal
relation in the vehicle monitoring domain is if different agents each monitor a
different stretch of track, such that all stretches belong to the same road.

23

4. Modifying PGPs: If agents have received or constructed a partial global plan,
they can try to improve it using techniques such as task re-distribution and task
re-ordering. By sending such a (modified) partial global plan to other agents, the
agent effectively proposes this plan to other agents. Other agents may accept the
roles the first agent has outlined for them in the PGP, they may refuse, or they
may send a counterproposal in the form of a modified partial global plan.

In Generalized Partial Global Planning (GPGP) (Decker and Lesser, 1994), PGP
is extended by defining a task-oriented framework (described in (Decker and Lesser,
1993)) which allows coordination mechanisms to be ‘inserted’ into the framework. In
this way, the set of coordination techniques used in the PGP framework for distributed
vehicle monitoring is merely one configuration of a framework that defines a ‘family’
of coordination algorithms that are not tied to a single domain.

In the TAEMS (Task Analysis, Environment Modeling, and Simulation) frame-
work, tasks can be composed of subtasks, forming a hierarchy with one root node
called thetask group. Multiple task groups can exist at the same time. The other rela-
tionships between tasks areenables(a task can only be started if the enabling task has
completed),facilitates (that is, a positive relation) andhinders(a negative relation).
For evaluating performance of execution of a (set of) task(s), two characteristics are
relevant, theelapsed timeand thequality of task execution, which is meant as a per-
formance measure that can be instantiated for specific domains. An agent hasbelief,
which means that the agent believes the part of the global task structure that he can see.
Agents can commit themselves to performing tasks for other agents.

Each agent has a local scheduler that schedules thecomputational resourcesof
agent, i.e., the scheduler determines which tasks an agent will execute and when. The
purpose of the coordination mechanisms is to ensure that the local scheduler is provided
with the best possible input that allows construction of a high utility schedule. In other
words, coordination mechanisms are used to enable an agent to make a good plan.

4.3 Plan merging using a resource formalism

Starting point in (de Weerdt et al., 2003) is that there are two agents that have plans that
can be executed without taking into account the plan of the other agent. In other words,
the agents can perform their plans without need for (further) coordination. However,
by cooperating the agents can find more efficient plans.

A resource logicis used to represent plans and actions. The goal situation is to
have a set of resources of a particularresource type. The initial situation is also a set
of resources. Agents can perform actions, calledskills, that consume resources and
produce resources. A plan can be represented as a directed acyclic graph where the
vertices are resources and skills and the arcs connect resources with skills, to indicate
either a consumption or production relationship (for example, see Figure 5 where a
skill s1 consumes one resource of typea and produces two resources of respectively
typeb andc).

A plan may produce more resources than required if(i) the skills produce resources
that are not used by subsequent skills in the plan and those resources are not required
for the goal, or if(ii) such resources are present in the initial situation. These unused

24

a

b c

s1

Figure 5: A plan: skills1 consumes a resource of type ‘a’ and produces resources of
types ‘b’ and ‘c’.

resources can be consideredside effectsof a plan. Other agents may be able to use
these unused resources. Although every agent already has all the resources he needs
for his plan, by buying resources from other agents, he does not need to produce them
himself. More precisely, if an agent can buy all the useful (i.e., not unused) resources
that a particular skill produces, then that skill can be removed from the plan. The
removal of a skill in turn frees up the resources that were previously consumed by the
deleted skill, which opens up possibilities for further trading of resources.

This work does not go into the details of the negotiation between agents, because
if agents cooperate (i.e., successfully trade resources), utility can only go up. To the
selling agent, the resources are worthless if he does not sell them and, assuming rational
agents, the buying agent will only buy resources if this leads to a reduction in cost.

5 Future work

Many of the accomplishments of multi-agent research, though fine within their in-
tended settings, fail to impress when applied ‘real-world’ problems. That is, the sim-
plifying assumptions that underlie these approaches often prove too restrictive for prac-
tical use. A number of these simplifying assumptions include (DesJardins et al., 2000):

1. The environment is fairly stable. In the early days of AI planning research, the
world was assumed to be static, meaning that changes to the state of the world
are always the result of actions performed by the agent. Of course, researchers
have long since recognized the importance of allowing unexpected changes to
occur in the environment, yet many research still relies on the assumption of a
(semi-) static environment.

2. The world is deterministic. We assume that we know the result of each ac-
tion. Unfortunately, especially in a multi-agent environment, this is not the case,
because for example another agent may have changed the world after the pre-
condition of an action has been established. However, under the assumption that

25

all agents’ actions are coordinated, this deterministic assumption is quite accept-
able.

3. There is a fair degree of coherence.Either the agents are designed to work
together or they are rational and have an incentive to do so. In other words, agents
will try to maximize their expected utility (Zlotkin and Rosenschein, 1996).

4. Knowledge about the world is correct and consistent among all agents. In
other words, the (relevant part of the) world is completely observable.

5. A feasible goal state existsin which all global goals are achieved, and all private
goals are also met (at least to some degree, such as in “make a lot of money”).

6. Learning is not required. In other words, (past) events do not affect the agents
other than a change of the current state.

7. Communication is reliable and (almost) free.All messages come across safely,
and the agents share a common ontology and utility units. Furthermore, there is
no significant cost associated with communication actions. Most of these as-
sumptions are commonly used, and, fortunately, they are acceptable in many
application domains.

To relax the first assumption, concerning changes in the environment, Desjardins et
al. propose to introduce a new multi-agent planning paradigm:Distributed Continual
Planning(DCP). A traditional approach to handling uncertainty is to plan for all the
contingenciesthat might arise. If we plan for both the case that the contingency arises
and for the case that it does not, then obtain a conditional plan that branches for each of
the possible contigencies. It is not hard to see that if the number of possible contigen-
cies becomes very large, then the conditional plan will become unmanageably large.
Another approach is therefore to have a single plan andmonitor its execution. As soon
as a deviation from the plan is detected, someplan repairmust be done to ensure that
the goals will still be reached.

Distributed Continual Planning aims to go beyond replanning on failure, or contin-
gency planning, by viewing planning as an ongoing, dynamic process in which plan-
ning and execution are interleaved. Continual planning should not only react to changes
that threaten the execution of the plan, but also look for opportunities to improve the
plan. This might mean for instance that if the goal of a plan has become obsolete yet
the plan is still feasible, then the agent should abandon the current plan and search for
a better use of its resources. Desjardins et al. state that an agent should engage in
continual planning when(i) aspects of the world changes dynamically beyond control
of the agent, when(ii) aspects of the world are revealed incrementally, when(iii) time
pressure requires an agent to start the execution of his plan before it is complete, or
when(iv) the agent’s objectives can evolve over time.

References

Allen, J. F., Hendler, J., and Tate, A., editors (1990).Readings in Planning. Morgan
Kaufmann Publishers, San Mateo, CA.

26

Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein, S. (2000). The complexity
of decentralized control of markov decision processes. InProceedings of the Six-
teenth Conference on Uncertainty in Artificial Intelligence (UAI-00), pages 32–37,
San Mateo, CA. Morgan Kaufmann Publishers.

Blum, A. L. and Furst, M. L. (1997). Fast planning through planning graph analysis.
Artificial Intelligence, 90:281–300.

Bond, A. H. and Gasser, L., editors (1988).Readings in Distributed Artificial Intelli-
gence. Morgan Kaufmann Publishers, San Mateo, CA.

Bonet, B. and Geffner, H. (2002). Planning as heuristic search.Artificial Intelligence,
129:5–33. Special issue on Heuristic Search.

Boutilier, C., Dean, T. L., and Hanks, S. (1999). Decision-theoretic planning: Struc-
tural assumptions and computational leverage.Journal of AI Research, 11:1–94.

Briggs, W. (1996). Modularity and Communication in Multi-Agent Planning. PhD
thesis, University of Texas at Arlington.

Bylander, T. (1994). The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1–2):165–204.

Clearwater, S. (1996).Market-Base Control – a paradigm for distributed resource
allocation. World Scientific Publishing Co.

Clement, B. J. and Barrett, A. C. (2003). Continual coordination through shared activ-
ities. InProceedings of the Second International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS-03).

Cox, J. S. and Durfee, E. H. (2003). Exploiting synergy while managing agent auton-
omy. InAAMAS ’03 Workshop on Autonomy, Delegation and Control.

de Weerdt, M. M., Bos, A., Tonino, J., and Witteveen, C. (2003). A resource logic for
multi-agent plan merging.Annals of Mathematics and Artificial Intelligence, special
issue on Computational Logic in Multi-Agent Systems, 37(1–2):93–130.

Decker, K. and Lesser, V. R. (1993). Quantitative modeling of complex computa-
tional task environmnents. InProceedings of the 12th international workshop on
distributed artificial intelligence, pages 67–82, Hidden Valley, Pennsylvania.

Decker, K. S. and Lesser, V. R. (1992). Generalizing the partial global planning al-
gorithm. International Journal of Intelligent and Cooperative Information Systems,
1(2):319–346.

Decker, K. S. and Lesser, V. R. (1994). Designing a family of coordination algorithms.
In Proceedings of the Thirteenth International Workshop on Distributed Artificial
Intelligence (DAI-94), pages 65–84.

Decker, K. S. and Li, J. (2000). Coordinating mutually exclusive resources using gpgp.
Autonomous Agents and Multi-Agent Systems, 3(2):113–157.

27

DesJardins, M. E., Durfee, E. H., Ortiz, C. L., and Wolverton, M. J. (2000). A survey
of research in distributed, continual planning.AI Magazine, 20(4):13–22.

Do, M. and Kambhampati, S. (2001). Sapa: A domain-independent heuristic metric
temporal planner. InProceedings of the Sixth European Conference on Planning
(ECP-01), pages 109–120.

Durfee, E. H. (1991). Organizations, plans, and schedules: An interdisciplinary per-
spective on coordinating AI agents.Journal of Intelligent Systems. Special Issue on
the Social Context of Intelligent Systems.

Durfee, E. H. (1999). Distributed problem solving and planning. In Weiß, G., editor,
A Modern Approach to Distributed Artificial Intelligence, chapter 3. The MIT Press,
San Francisco, CA.

Durfee, E. H. (2001). Scaling up agent coordination strategies.Computer.

Durfee, E. H. and Lesser, V. R. (1987). Planning coordinated actions in dynamic do-
mains. InProceedings of the DARPA Knowledge-Based Planning Workshop, pages
18.1–18.10.

Ephrati, E., Pollack, M., and Rosenschein, J. S. (1995a). A tractable heuristic that
maximizes global utility through local plan combination. In Lesser, V., editor,Pro-
ceedings of the First International Conference on Multi-Agent Systems (ICMAS-95),
pages 94–101, San Francisco, CA. AAAI Press, distributed by The MIT Press.

Ephrati, E., Pollack, M. E., and Ur, S. (1995b). Deriving multi-agent coordination
through filtering strategies. InProceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (IJCAI-95), pages 679–687, San Mateo, CA.
Morgan Kaufmann Publishers.

Ephrati, E. and Rosenschein, J. S. (1993). Multi-agent planning as the process of
merging distributed sub-plans. InProceedings of the Twelfth International Workshop
on Distributed Artificial Intelligence (DAI-93), pages 115–129.

Ephrati, E. and Rosenschein, J. S. (1994). Divide and conquer in multi–agent planning.
In Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-
94), pages 375–380, Menlo Park, CA. AAAI Press.

Ephrati, E. and Rosenschein, J. S. (1995). A framework for the interleaving of ex-
ecution and planning for dynamic tasks by multiple agents. In Castelfranchi, C.
and Müller, J., editors,From Reaction to Cognition — Fifth European Workshop on
Modelling Autonomous Agents in a Multi-Agent World (MAAMAW-93), LNAI Vol-
ume 957, pages 139–156, Berlin. Springer Verlag.

Erol, K., Hendler, J., and Nau, D. S. (1994). HTN planning: Complexity and ex-
pressivity. InProceedings of the Twelfth National Conference on Artificial Intelli-
gence (AAAI-94), volume 2, pages 1123–1128, Seattle, Washington, USA. AAAI
Press/MIT Press.

28

Ferber, J. and Drogoul, A. (1992). Using reactive multi-agent systems in simulation
and problem solving. In Avouris, N. M. and Gasser, L., editors,Distributed Arti-
ficial Intelligence: Theory and Praxis, volume 5 ofEuro Courses: Computer and
Information Science, pages 53–80. Kluwer Academic, The Netherlands.

Fikes, R. E. and Nilsson, N. (1971). STRIPS: A new approach to the application of
theorem proving to problem solving.Artificial Intelligence, 5(2):189–208.

Fischer, K., Ruß, C., and Vierke, G. (1998). Decision theory and coordination in multi-
agent systems. Technical Report RR-98-02, DFKI GmbH: German Research Center
for Artificial Intelligence.

Foulser, D., Li, M., and Yang, Q. (1992). Theory and algorithms for plan merging.
Artificial Intelligence Journal, 57(2–3):143–182.

Garey, M. and Johnson, D. (1979).Computers and intractability – a guide to the theory
of NP-completeness. W.H. Freeman and company, New York, NY.

Georgeff, M. P. (1983). Communication and interaction in multi-agent planning. In
Proceedings of the Third National Conference on Artificial Intelligence (AAAI-83),
pages 125–129, Menlo Park, CA. AAAI Press. Also published in Bond and Gasser
(1988), pages 200–204.

Georgeff, M. P. (1984). A theory of action for multiagent planning. InProceedings
of the Fourth National Conference on Artificial Intelligence (AAAI-84), pages 121–
125, Menlo Park, CA. AAAI Press. Also published in Bond and Gasser (1988),
pages 205–209.

Georgeff, M. P. (1988). Communication and interaction in multi-agent planning. In
Bond, A. and Gasser, L., editors,Readings in Distributed Artificial Intelligence,
pages 200–204. Morgan Kaufmann Publishers, San Mateo, CA. Also published
as Georgeff (1983).

Haddawy, P. and Hanks, S. (1998). Utility models for goal-directed, decision-theoretic
planners.Computational Intelligence, 14(3):392–429.

Haslum, P. and Jonsson, P. (1999). Some results on the complexity of planning with in-
complete information. InProceedings of the Fifth European Conference on Planning
(ECP-99), volume 1809 ofLecture Notes on Artificial Intelligence, pages 308–318,
Berlin. Springer Verlag.

Hoffmann, J. and Nebel, B. (2001). The FF planning system: Fast plan generation
through heuristic search.Journal of AI Research, 14:253–302.

Janlert, L.-E. (1987). Modeling change—the frame problem. In Pylyshyn, Z., editor,
The Robot’s Dilemma: The Frame Problem in Artificial Intelligence, pages 1–40.
Ablex Publishing Co., Norwood, NJ.

Jennings, N. R. (1996). Coordination techniques for artificial intelligence. In O’Hare,
G. and Jennings, N., editors,Foundations of Distributed Artificial Intelligence, pages
187–210. John Wiley & Sons, New York, NY.

29

Kambhampati, S. (1997). Refinement planning as a unifying framework for plan syn-
thesis.AI Magazine, 18(2):67–97.

Katz, M. J. and Rosenschein, J. S. (1989). Plans for multiple agents. In Gasser,
L. and Huhns, M. N., editors,Distributed Artificial Intelligence, volume 2 ofRe-
search Notes in Artificial Intelligence, pages 197–228. Pitman Publishing and Mor-
gan Kaufmann Publishers, London, UK.

Koehler, J. (1998). Planning under resource constraints. InProceedings of the Thir-
teenth European Conference on Artificial Intelligence (ECAI-98), pages 489–493.
John Wiley & Sons.

Lesser, V., Decker, K., Carver, N., Garvey, A., Neimen, D., Prassad, M., and Wag-
ner, T. (1998). Evolution of the gpgp domain independent coordination framework.
Technical Report UMASS CS TR 1998-005, University of Massachusetts.

Lifschitz, V. (1987). On the semantics of STRIPS. InReasoning About Actions and
Plans — Proceedings of the 1986 Workshop, pages 1–9, San Mateo, CA. Morgan
Kaufmann Publishers.

Malone, T. W. and Crowston, K. (1991). Toward an interdisciplinary study of coordi-
nation. Center for Coordination Science, MIT.

Malone, T. W. and Crowston, K. (1993). The interdisciplinary study of coordination.
ACM computing surveys.

Nebel, B. (2000). On the compilability and expressive power of propositional planning
formalisms.Journal of AI Research, 12:271–315.

Nwana, H. S., Lee, L., and Jennings, N. R. (1996). Coordination in software agent
systems.BT Technology Journal, 14(4):79–88.

Pednault, E. P. (1987). Formulating multi-agent dynamic-world problems in the clas-
sical planning framework. In Georgeff, M. P. and Lansky, A. L., editors,Reasoning
About Actions and Plans — Proceedings of the 1986 Workshop, pages 47–82, San
Mateo, CA. Morgan Kaufmann Publishers. Also published in Allen et al. (1990).

Penberthy, J. and Weld, D. S. (1992). UCPOP: A sound, complete, partial order plan-
ner for ADL. In Proceedings of the Third International Conference on Knowledge
Representation and Reasoning (KR&R-92), pages 103–114. Morgan Kaufmann Pub-
lishers.

Penberthy, J. and Weld, D. S. (1994). Temporal planning with continuous change. In
Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94),
pages 1010–1015, Menlo Park, CA. AAAI Press.

Pynadath, D. and Tambe, M. (2002). The communicative multiagent team deci-
sion problem: Analyzing teamwork theories and models.Journal of AI Research,
16:389–423.

30

Raphael, B. (1971). The frame problem in problem-solving systems. In Findler, N. and
Meltzer, B., editors,Proceedings of the Advanced Study Institute on Artificial Intel-
ligence and Heuristic Programming, pages 159–169, Edinburgh, UK. Edinburgh
University Press.

Refanidis, I. and Vlahavas, I. (2001). The GRT planner: Backward heuristic construc-
tion in forward state-space planning.Journal of AI Research, 15:115–161.

Rosenschein, J. S. (1995). Multiagent planning as a social process: Voting, privacy, and
manipulation. In Lesser, V. R., editor,Proceedings of the First International Con-
ference on Multi-Agent Systems (ICMAS-95), page 431, San Francisco, CA. AAAI
Press, distributed by The MIT Press.

Sacerdoti, E. D. (1975). The nonlinear nature of plans. InProceedings of the Fourth
International Joint Conference on Artificial Intelligence (IJCAI-75), pages 206–214,
San Mateo, CA. Morgan Kaufmann Publishers.

Sandholm, T. W. and Lesser, V. R. (1997). Coalitions among computationally bounded
agents.Artificial Intelligence, 94(1):99–137.

Shehory, O. and Kraus, S. (1998). Methods for task allocation via agent coalition
formation.Artificial Intelligence, 101(1–2):165–200.

Shoham, Y. and Tennenholtz, M. (1995). On social laws for artificial agent societies:
Off-line design.Artificial Intelligence, 73(1–2):231–252.

Smith, D. E. and Weld, D. S. (1999). Temporal planning with mutual exclusion rea-
soning. InProceedings of the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI-99), San Mateo, CA. Morgan Kaufmann Publishers.

Stuart, C. J. (1985). An implementation of a multi-agent plan synchronizer. InProceed-
ings of the Ninth International Joint Conference on Artificial Intelligence (IJCAI-
85), pages 1031–1033, San Mateo, CA. Morgan Kaufmann Publishers. Also pub-
lished in Bond and Gasser (1988), pages 216–219.

ter Mors, A., Valk, J., and Witteveen, C. (2004). Coordinating autonomous planners.
In Proceedings of the international conference on artificial intelligence, pages 795–
801. CSREA Press.

Thangarajah, J., Padhgam, L., and Winikoff, M. (2003). Detecting and avoiding in-
terference between goals in intelligent agents. InProceedings of the Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI-03).

Tsamardinos, I., Pollack, M. E., and Horty, J. F. (2000). Merging plans with quantita-
tive temporal constraints, temporally extended actions, and conditional branches. In
Proceedings of the Fifth International Conference on Artificial Intelligence Planning
Systems (AIPS-00), pages 264–272, Menlo Park, CA. AAAI Press.

Veloso, M., Carbonell, J., Ṕerez, A., Borrajo, D., Fink, E., and Blythe, J. (1995). Inte-
grating planning and learning: The PRODIGY architecture.Journal of Experimental
and Theoretical Artificial Intelligence, 7(1):81–120.

31

Vickrey, W. (1961). Computer speculation, auctions, and competitive sealed tenders.
Journal of Finance, 16:8–37.

von Martial, F. (1989). Multiagent plan relationships. InProceedings of the Ninth
International Workshop on Distributed Artificial Intelligence (DAI-89), pages 59–
72.

von Martial, F. (1990). Coordination of plans in multiagent worlds by taking advantage
of the favor relation. In Huhns, M., editor,Proceedings of the Tenth International
Workshop on Distributed Artificial Intelligence (DAI-90), number ACT-AI-355-90
in MCC Technical Report, Austin, TX.

von Martial, F. (1992). Coordinating Plans of Autonomous Agents, volume 610 of
Lecture Notes on Artificial Intelligence. Springer Verlag, Berlin.

Walsh, W. E. and Wellman, M. P. (1999). A market protocol for decentralized task
allocation and scheduling with hierarchical dependencies. InProceedings of the
Third International Conference on Multi-Agent Systems (ICMAS-98), pages 325–
332. An extended version of this paper is also available.

Walsh, W. E., Wellman, M. P., and Ygge, F. (2000). Combinatorial auctions for supply
chain formation. InSecond ACM Conference on Electronic Commerce, pages 260–
269. ACM Press.

Weld, D. S. (1994). An introduction to least-commitment planning.AI Magazine,
15(4):27–61.

Weld, D. S. (1999). Recent advances in AI planning.AI Magazine, 20(2):93–123.

Wellman, M. P. (1993). A market-oriented programming environment and its applica-
tion to distributed multicommodity flow problems.Journal of Artificial Intelligence
Research, 1:1–23.

Wellman, M. P., Walsh, W. E., Wurman, P., and MacKie-Mason, J. (1998). Auction
protocols for decentralized scheduling. InProceedings of the Eighteenth Interna-
tional Conference on Distributed Computing Systems.

Wellman, M. P., Walsh, W. E., Wurman, P. R., and MacKie-Mason, J. K. (2001). Auc-
tion protocols for decentralized scheduling.Games and Economic Behavior, 35(1–
2):271–303.

Wolfman, S. A. and Weld, D. S. (2001). Combining linear programming and satisfia-
bility solving for resource planning.Knowledge Engineering Review, 16(1):85–99.

Yang, Q., Nau, D. S., and Hendler, J. (1992). Merging separately generated plans with
restricted interactions.Computational Intelligence, 8(4):648–676.

Zlotkin, G. and Rosenschein, J. S. (1996). Mechanisms for automated negotiation in
state oriented domains.Journal of Artificial Intelligence Research, 5:163–238.

32

